Roxeth Primary School Maths Calculation Policy

Subtraction Year 2

Subtraction Year 3

$52-8=\square$
 $\square-20=25$
 $22=\square-6$

Missing number problems
$6+\square+3=11$
It is valuable to use a range of representations (also see Y 1). 7

Number lines:

Continue to use number lines to subtract. Refer back to Year 1 version 1 and 2. Partition the second number only.

Towards written methods
Children will begin to learn the first step of the column method for subtraction without decomposition only when they are secure with subtracting on a number line and partitioning.

34	34		48	48	
$-\frac{12}{2}$	12	22	$-\frac{16}{2}$	16	36
$\frac{30}{22}$			$\frac{30}{32}$		

The bar model should continue to be used to help children to subtract.

Missing number problems:

$\square=43-27$
$145-\square=138$
$274-30=\square$
$245-\square=195$
$532-200=\square$
$364-153=\square$

Mental methods :

These should continue to develop, supported by a range of models and images, including dienes and numicon. The bar model should continue to be used to help with problem solving (see Years 1 and 2).

Number line:

Children should make choices about whether they prefer to add on or count back (refer to Year 1 version 1 and 2) for all areas of maths e.g.
Kevin spends buys a pencil for 64 p. He pays with
$£ 1$. How much change will he receive?

Written methods (progressing to 3 -digits)

Once children are secure with using the number line and partitioning, only then should they move on to the written methods.
Expanded written method - partition the second

number

65-12 =
${ }_{10}{ }_{2}$
$65-10=55$
$55-2=53$
Formal written method (up to 3-digits) with and without decomposition

165	H T O	$4{ }^{4} 52$
24	$2 \chi^{3} 2$	-139
141	216	313

Subtraction Ye
Missing number/digit problems:
$456+\square=710$
$1 \square 7+6 \square=200$
$60+99+\square=340$
$200-90-80=\square$
$225-\square=150$
$\square-25=67$
$3450-1000=\square$
$\square-2000=900$

Mental methods should continue to develop, supported by a range of models and images, including the number line., numicon and dienes. The bar model should continue to be used to help with problem solving.

Written methods (progressing to 4 -digits)

Column subtraction with decomposition, progressing to calculations with 4 -digit numbers.

If understanding of the expanded method (please see Year 3) is secure, children will move on to the formal method of column subtraction.

When subtracting using the column
method, the numbers being
decomposed should be written above the top line as the answer is calculated.

However, if your child is already confident at column subtraction, placing the decomposed numbers elsewhere, they should be allowed to continue to do so.

Subtraction Year 5

Subtraction Year 6

Missing number/digit problems:			
$6.45=6+0.4+\square$		6.45	
$119-\square=86$			
$1,000,000-\square=999,000$	$\mathbf{6}$	$\mathbf{0 . 4}$?
$600,000+\square+1000=671,000$			

$600,000+\square+1000=671,000$
$12,462-2300=\square$
Mental methods should continue to develop, supported by a range of models and images, including the number line, numicon and dienes. The bar model should continue to be used to help with problem solving.

Written methods (progressing to more than 4-digits)

When understanding of the expanded method is secure (please see Year 3) children will move on to the formal method of decomposition.

$$
\begin{array}{r}
5232 \\
-4814 \\
\hline 1418
\end{array}
$$

When subtracting using the column method, the numbers being decomposed should be written above the top line as the answer is calculated.

However, if your child is already confident at column subtraction, placing the decomposed numbers elsewhere, they should be allowed to continue to do so.

Continue subtracting decimals, including those with different numbers of decimal places e.g.
$12.4-3.26=$
$9.8-6.21=$
$3.4-2.01=$

Missing number/digit problems: \square and \square each stand for a different number. $\square=34 . \square+\square=\square+\square$ $+\square$. What is the value of \square ? What if $\square=28$? What if $\square=21$?
$10,000,000=9,000,100+\square$
$7-2 \times 3=\square$
$(7-2) \times 3=\square$
$(\square-2) \times 3=15$
Mental methods should continue to develop, supported by a range of models and images, including the number line, numicon and dienes. The bar model should continue to be used to help with problem solving.

Written methods

As year 5, but progressing to larger numbers past 1 million (7 digits), aiming for children to work through the stages of decomposition fluently. Continue subtracting with decimals, including those with different numbers of decimal places.

Physical objects, such as numicon, should be used alongside the column method to develop understanding of subtraction.

Problem Solving

Pupils have the opportunity to apply their knowledge in a variety of contexts and problems such as maths investigations.

Children to count in $2 s, 5 s$ and 10 s .

Doubling and combining

Understand multiplication is related to doubling and combining groups of the same size (repeated addition)

$5+5+5+5+5+5=30$
$5 \times 6=30$
5 multiplied by 6
6 groups of 5
6 hops of 5

Problem solving Use concrete objects (including money and measures) e.g. 3 friends have 5 p each. How much is this altogether?

Use numicon to develop the vocabulary relating to 'times' - Pick up five, 4 times

Use arrays to understand multiplication can be done in any order (commutative)

Children to count in $2 s, 3 s, 5 s$ from zero.
They also need to count in 10 s from any number, forwards and backwards e.g. 57, 47, 37, 27

Missing number problems

Using understanding of the inverse and practical resources to solve missing number problems.
$7 \times 2=\square$
$\square=2 \times 7$
$7 x \square=14 \quad 14=\square \times 7$
$\square \times 2=14 \quad 14=2 \times \square$

Develop understanding of multiplication using arrays with repeated addition and number lines.

This array can be written in 4 different ways:

- $4+4+4=12$
- $3+3+3+3=12$
- $4 \times 3=12$
- $3 \times 4=12$

Begin to develop understanding of multiplication as scaling (3 times bigger/taller):

Doubling numbers up to $10+10$ Link with understanding scaling

double 4 is 8

 $4 \times 2=8$ Using known doubles to work out double $2 d$ numbers(double 15 = double $10+$ double 5)

Children to know the $2 s, 3 s, 5$ s and 10s (Year 2).

Recall and use multiplication and division facts for the $3 \mathrm{~s}, 4 \mathrm{~s}$ and 8 s (Year 3).

Missing number problems

Continue with a range of sums s as in Year 2 but with appropriate numbers.

Mental methods

Doubling 2 digit numbers using partitioning e.g. double 24.

Double 20 is 40
Double 4 is 8 .
$40+8=48$

Continue to multiply on a number line.

Explore different methods for larger numbers e.g. $13 \times 4=$ 10 groups of 4 and 3 groups of 4

Written methods - grid method

Developing written methods using understanding of visual images e.g. 18×3

$$
\begin{array}{l|l|l|l}
x & 10 & 8 & \\
\hline 3 & 30 & 24 & 54
\end{array} \quad 30+24=54
$$

Give children opportunities for children to explore this method using dienes and numicon.

Multiplication Year 4

Children to recall all multiplication and division

 facts up to 12×12
Missing number problems

Continue with a range of equations as in Year 2 but with appropriate numbers.
Also include equations with missing digits e.g. $\square 2 \times 5=160$

Mental methods

Counting in multiples of 25 and 1000, and steps of 1/100.

Solving practical problems where children need to scale up e.g. how tall would a 25 cm sunflower be if it grew 6 times taller?

Written methods - grid method (progressing to 3

 digits $\times 2$ digits)Children to embed and deepen their understanding of the grid method to multiply 2 digits $\times 2$ digits (e.g. 18×13), progressing to 3 digits $\times 2$ digits (e.g. 123×14). Ensure this is linked back to their understanding of arrays and place value.

Multiplication Year 5

Multiplication Year 6

Children to recall all multiplication and division facts up to 12×12 (Year 4)

Missing number problems

Continue with a range of equations as in Year 2 but with appropriate numbers. Also include equations with missing digits.

Mental methods

X by $10,100,1000$ using moving digits on a place value grid.

Use practical resources and jottings to explore equivalent statements (e.g. $4 \times 35=2 \times 2 \times 35$)

Recall of prime numbers up 19 and identify prime numbers up to 100 (with reasoning)

Solving practical problems where children need to scale up.

Identify factor pairs for numbers

Written methods (progressing to 4 digits $\times 2$ digits e.g.

 1247×13)children to explore how the grid method supports an understanding of the column method.

Grid method:

10	8
10	100
30	80

Column method:

Children to recall all multiplication and division facts up to 12×12 (Year 4)

Missing number problems

Continue with a range of equations as in Year 2 but with appropriate numbers. Also include equations with missing digits.

Mental methods

Identifying common factors and multiples of given numbers.

Solving practical problems where children need to scale up.

Written methods (up to 4-digits by 2-digits)

Continue to refine and deepen understanding of written methods including grid method and column method.

$$
1342
$$

$\times \quad 18$
13420
10736
24156

Physical objects, such as numicon, should be used alongside the column method to develop understanding of multiplication.

Problem Solving

Pupils have the opportunity to apply their knowledge in a variety of contexts and problems such as maths investigations.

$\div=$ signs and missing numbers

Continue using a range of equations as in year 2 but with appropriate numbers.

Sharing, Grouping and using a number line

Children will continue to explore division as sharing and grouping, and to represent calculations on a number line until they have a secure understanding. Children should progress in their use of written division calculations:

- Using tables facts with which they are fluent
- Experiencing a logical progression in the numbers they use, for example:

1. Dividend just over $10 x$ the divisor, e.g. $84 \div 7$
2. Dividend just over $10 x$ the divisor when the divisor is a teen number, e.g. $173 \div 15$ (learning sensible strategies for calculations such as $102 \div 17$)
3. Dividend over $100 x$ the divisor, e.g. $840 \div 7$
4. Dividend over $20 x$ the divisor, e.g. $168 \div 7$ All of the above stages should include calculations with remainders as well as without.
Remainders should be interpreted according to the context. (i.e. rounded up or down to relate to the answer to the problem)

Formal Written Methods (Year 4)

Formal short division should only be introduced once children have a good understanding of division, its links with multiplication and the idea of 'chunking up' to find a target number (see use of number lines above).

Short division to be modelled for understanding using place value counters as shown below. Calculations with 2 and 3 -digit dividends.

Short division using place value counters to group.
$615 \div 5$

1. Make 615 with place value counters.
2. How many groups of 5 hundreds can you make with 6 hundred counters?
3. Exchange 1 hundred for 10 tens
4. How many groups of 5 tens can you make with 11 ten counters?
5. Exchange 1 ten for 10 ones.
6. How many groups of 5 ones can you make with 15 ones?

Formal Written Methods (Year 5)

Continued as shown in Year 4, leading to the efficient use of a formal method. The language of grouping to be used .
E.g. $1435 \div 6$

Children begin to practically develop their understanding of how to express the remainder as a decimal or a fraction. Ensure practical understanding allows children to work through this (e.g. what could I do with this remaining 1 ? How could I share this between 6 as well?)

Children to recall all multiplication and division facts up to 12×12

$\div=$ signs and missing numbers

Continue using a range of equations but with appropriate numbers

Sharing and Grouping and using a number line

Children will continue to explore division as sharing and grouping, and to represent calculations on a number line as appropriate.

Quotients should be expressed as decimals and fractions

Formal Written Methods - long and short division including decimal remainder.
E.g. $1504 \div 8$ (short)

E.g. $1504 \div 8$ (long)

E.g. $121 \div 8$ (long with decimal remainder)
15.125 $8 \longdiv { 1 2 1 . 0 0 0 }$ -8 41 $-\frac{40}{10}$ -8 $\begin{array}{r}20 \\ -16 \\ \hline\end{array}$

Division continued

 ALL YEAR GROUPS
Glossary

Physical objects, such as numicon, should be used alongside the column method to develop understanding of division.

Problem Solving

Teachers should ensure that pupils have the opportunity to apply their knowledge in a variety of contexts and problems such as maths investigations.

Glossary

Algebra - Maths which uses letters and other symbols to represent numbers and quantities.

Arrays - an orderly arrangement of circles which represent numbers.

Bar modelling - a visual way to organize data for problem solving.

Chunking - repeated subtraction of the divisor and multiples of the divisor - in other words, working out how many groups of a number fit into another number.

Commutative - when the operation means the quantities connected give the same result, no matter which order they are put in e.g. $3+4=7$ and $4+3=$

Concrete objects/apparatus - physical objects your children can touch and use to represent numbers e.g. cubes, counters, dice etc.

Decomposition - breaking a number apart e.g. $347=$ 300+40+7.

Dienes apparatus - blocks which represent 1, 10, 100 and 1000.

Dividend - the number you want to divide up.
Divisor - the number dividing the number you want to divide up.

Equation - a maths statement which expresses 2 equal mathematical expressions, indicated by the = sign.

Expanded method - showing working out in division a line at a time.

Factor pairs - any 2 numbers multiplied to give a certain number e.g. $16=8$ and 2 , or 4 and 4 or 16 and 1.

Grid method - a way for children to solve multiplication problems as shown in the Multiplication section from Year 3 up.
Grouping - demonstrating division by putting objects into groups.

Manipulatives - physical objects your children can touch and use to represent numbers e.g. numicon, cubes, counters, dice etc.

Numicon - flat plastic shapes with holes in, with each shape representing a number from 1 to 10 . The aim of Numicon is to make numbers real for children through them being able to see and touch them.

Partitioning - a way of splitting large numbers into smaller units so they're easier to work with.

Pictorial representation - a picture used to show the numbers being calculated in a sum or problem.

Prime numbers - a number greater than 1 that can only be divided by itself and 1 e.g. 7

Key Mathematical Vocabulary for the

4 operations

Addition:

Add, groups of, more, plus, increase, total, sum, altogether

Subtraction:

Subtract, minus, less, decrease, take away, fewer, difference

Multiplication:

Multiply, times, groups of, repeated addition, product, multiplied by, array

Division:

Divide, divided by, share, divisible by, share equally, group

Place value :

Hundreds of thousands	Tens of thousands

Websites to support learning

- White Rose Maths
- BBC Bitesize
- NRich
- Oxford Owl
- Top Marks
- Primary Resources
- ICT games
- Maths Frame
- Times Table Rockstars - Children in KS2 have a school subscription

